A higher order (2,4) scheme for reducing dispersion in FDTD algorithm
A finite-difference time-domain (FDTD) scheme with second-order accuracy in time and fourth-order in space is discussed for the solution of Maxwell's equations in the time domain. Compared with the standard Yee (1966) FDTD algorithm, the higher order scheme reduces the numerical dispersion and...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electromagnetic compatibility 1999-05, Vol.41 (2), p.160-165 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A finite-difference time-domain (FDTD) scheme with second-order accuracy in time and fourth-order in space is discussed for the solution of Maxwell's equations in the time domain. Compared with the standard Yee (1966) FDTD algorithm, the higher order scheme reduces the numerical dispersion and anisotropy and has improved stability. Dispersion analysis indicates that the frequency band in which the higher order scheme yields an accurate solution is widened on the same grid, this means a larger space increment can be chosen for the same excitation. Numerical results show the applications of the scheme in modeling wide-band electromagnetic phenomena on a coarse grid. |
---|---|
ISSN: | 0018-9375 1558-187X |
DOI: | 10.1109/15.765109 |