Metamodels for Computer-based Engineering Design: Survey and recommendations

The use of statistical techniques to build approximations of expensive computer analysis codes pervades much of today's engineering design. These statistical approximations, or metamodels, are used to replace the actual expensive computer analyses, facilitating multidisciplinary, multiobjective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering with computers 2001-07, Vol.17 (2), p.129-150
Hauptverfasser: Simpson, T.W., Poplinski, J.D., Koch, P. N., Allen, J.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of statistical techniques to build approximations of expensive computer analysis codes pervades much of today's engineering design. These statistical approximations, or metamodels, are used to replace the actual expensive computer analyses, facilitating multidisciplinary, multiobjective optimization and concept exploration. In this paper, we review several of these techniques, including design of experiments, response surface methodology, Taguchi methods, neural networks, inductive learning and kriging. We survey their existing application in engineering design, and then address the dangers of applying traditional statistical techniques to approximate deterministic computer analysis codes. We conclude with recommendations for the appropriate use of statistical approximation techniques in given situations, and how common pitfalls can be avoided. [PUBLICATION ABSTRACT]
ISSN:0177-0667
1435-5663
DOI:10.1007/PL00007198