Effects of photoirradiation in UV and VUV regions during plasma exposure to polymers

Interactions between photons irradiated from Ar–O 2 mixture plasmas and polymer surfaces were investigated on the basis of depth analyses of chemical bonding states in the nano-surface layer of polyethylene terephthalate (PET) films via hard X-ray photoelectron spectroscopy (HXPES) and conventional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thin solid films 2011-08, Vol.519 (20), p.6810-6814
Hauptverfasser: Cho, Ken, Setsuhara, Yuichi, Takenaka, Kosuke, Shiratani, Masaharu, Sekine, Makoto, Hori, Masaru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interactions between photons irradiated from Ar–O 2 mixture plasmas and polymer surfaces were investigated on the basis of depth analyses of chemical bonding states in the nano-surface layer of polyethylene terephthalate (PET) films via hard X-ray photoelectron spectroscopy (HXPES) and conventional X-ray photoelectron spectroscopy (XPS). The PET films were exposed to photons from the Ar–O 2 mixture plasmas by covering the PET samples with MgF 2 and quartz windows as optical filters for evaluation of photoirradiation effects in ultraviolet (UV) and vacuum ultraviolet (VUV) regions. The HXPES results indicated that the degradation of the chemical bonding states due to photoirradiation in regions was insignificant in deeper regions up to about 50 nm from the surface. Whereas, conventional XPS analysis showed that C O bond, O C O bond and C O bond increased after photoirradiation in UV and VUV regions. These results suggest that the increase in oxygen functionalities (C O bond, O C O bond and C O bond) may be attributed to chemical reactions and/or terminations of scissed bonds via photodecompositions of the polymer with oxygen and/or OH species (oxygen molecules and radicals during plasma exposure and/or oxygen molecules and moisture after taking the PET samples out of the plasma reactor to the ambient air) in the vicinity of the sample surface.
ISSN:0040-6090
1879-2731
DOI:10.1016/j.tsf.2011.04.060