Least-squares linear estimation of signals from observations with Markovian delays

The least-squares linear estimation of signals from randomly delayed measurements is addressed when the delay is modeled by a homogeneous Markov chain. To estimate the signal, recursive filtering and fixed-point smoothing algorithms are derived, using an innovation approach, assuming that the covari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2011-08, Vol.236 (2), p.234-242
Hauptverfasser: García-Ligero, M.J., Hermoso-Carazo, A., Linares-Pérez, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The least-squares linear estimation of signals from randomly delayed measurements is addressed when the delay is modeled by a homogeneous Markov chain. To estimate the signal, recursive filtering and fixed-point smoothing algorithms are derived, using an innovation approach, assuming that the covariance functions of the processes involved in the observation equation are known. Recursive formulas for filtering and fixed-point smoothing error covariance matrices are obtained to measure the goodness of the proposed estimators.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2011.06.021