Ability of Near Infrared Spectroscopy to Measure Oxygenation in Isolated Upper Extremity Muscle Compartments

Purpose Near infrared spectroscopy (NIRS), a noninvasive means for monitoring muscle oxygenation, may be useful in the diagnosis of acute compartment syndrome, a condition characterized by poor tissue perfusion. This study used the decrease in muscle oxygenation caused by exercise to investigate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of hand surgery (American ed.) 2012-02, Vol.37 (2), p.297-302
Hauptverfasser: Cole, Ashley L., MPH, Herman, Richard A., BS, Heimlich, Jonathan B., BS, Ahsan, Sahir, BS, Freedman, Brett A., MD, Shuler, Michael S., MD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Near infrared spectroscopy (NIRS), a noninvasive means for monitoring muscle oxygenation, may be useful in the diagnosis of acute compartment syndrome, a condition characterized by poor tissue perfusion. This study used the decrease in muscle oxygenation caused by exercise to investigate the ability of anatomic placement of NIRS sensor pads over compartments of the forearm to isolate perfusion values of a specific compartment. Methods We recruited 63 uninjured volunteers from a private clinic-based setting and placed NIRS sensor pads over the dorsal, volar, and mobile wad compartments of 1 forearm. A total of 49 participants also had the contralateral forearm monitored, which served as an internal control. Participants performed a series of 3 exercises designed to sequentially activate the muscles of each compartment. A washout period separated each exercise to allow perfusion to return to baseline. We compared NIRS values of each compartment recorded during muscle contraction with baseline values. Results Mean NIRS values decreased significantly from baseline during muscle contraction for all compartments, whereas mean NIRS values of muscle compartments that remained at rest showed little or no change. We observed no changes in NIRS values of the contralateral arm, which remained at rest during the entire data collection period. Conclusions Although lack of an existing method for quantifying muscle perfusion precludes validation of this technique against a reference standard, this study suggests that NIRS can provide oxygenation values that are both sensitive and specific to muscle compartments of the forearm. Future studies should investigate NIRS among patients with upper extremity injuries. Type of study/level of evidence Diagnostic III.
ISSN:0363-5023
1531-6564
DOI:10.1016/j.jhsa.2011.10.037