An in situ forming collagen–PEG hydrogel for tissue regeneration
There are limited options for surgeons to repair simple or complex tissue defects due to injury, illness or disease. Consequently, there are few treatments for many serious ailments, including neural-related injuries, myocardial infarction and focal hyaline cartilage defects. Tissue-engineered scaff...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2012-01, Vol.8 (1), p.124-132 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There are limited options for surgeons to repair simple or complex tissue defects due to injury, illness or disease. Consequently, there are few treatments for many serious ailments, including neural-related injuries, myocardial infarction and focal hyaline cartilage defects. Tissue-engineered scaffolds offer great promise for addressing these wide-ranging indications; however, there are many considerations that need to be made when conceptualizing a product. For many applications, an in situ forming scaffold that could completely fill defects with complex geometries, adhere to adjacent tissues and foster cell proliferation would be ideal. Additionally, the scaffold would preferably have tailored mechanical properties similar to native tissues and highly controllable gelation kinetics, and would not require an external trigger, such as ultraviolet light, for gelation. We have developed a unique injectable hydrogel system composed of collagen and multi-armed poly(ethylene glycol) (PEG) that meets all of these criteria. The collagen component enables cellular adhesion and permits enzymatic degradation, while the multi-armed PEG component has amine-reactive chemistry that also binds proteins/tissue and is hydrolytically degradable. We have characterized the mechanical properties, swelling, degradation rates and cytocompatibility of these novel hydrogels. The hydrogels demonstrated tunable mechanics, variable swelling and suitable degradation profiles. Cells adhered and proliferated to near confluence on the hydrogels over 7days. These data suggest that these collagen and PEG hydrogels exhibit the mechanical, physical and biological properties suitable for use as an injectable tissue scaffold for the treatment of a variety of simple and complex tissue defects. |
---|---|
ISSN: | 1742-7061 1878-7568 |
DOI: | 10.1016/j.actbio.2011.07.028 |