Absence of the lectin activation pathway of complement does not increase susceptibility to Pseudomonas aeruginosa infections
Abstract Pseudomonas aeruginosa remains one of the major clinical pathogens that burden immuno-compromised patients and patients with cystic fibrosis. The present study aimed to define the role of the lectin pathway of complement in the immune-defence against P. aeruginosa in a mouse model of invasi...
Gespeichert in:
Veröffentlicht in: | Immunobiology (1979) 2012-02, Vol.217 (2), p.272-280 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Pseudomonas aeruginosa remains one of the major clinical pathogens that burden immuno-compromised patients and patients with cystic fibrosis. The present study aimed to define the role of the lectin pathway of complement in the immune-defence against P. aeruginosa in a mouse model of invasive pneumonia. Using in vitro assays specific for each of the three complement pathways, we demonstrate that some strains of P. aeruginosa bind lectin pathway recognition sub-components and initiate complement activation in a lectin pathway-specific mode. All of the tested strains activated complement via classical and alternative pathways. We assessed the importance of lectin pathway activation in fighting P. aeruginosa infections by testing a lectin pathway activating strain in a mouse model of intra-nasal infection. MASP-2 (mannan binding lectin associated serine protease-2) deficient mice, which have no lectin pathway activity, had no significant survival disadvantage compared to wild type littermates (72.7% and 81.8% survival, respectively, p = 0.48). Likewise, no difference in opsonising activity was seen between MASP-2 sufficient and MASP-2 deficient mouse sera. Moreover, cytokine expression profiles in the lungs of WT mice and MASP-2−/− mice were similar throughout the course of P. aeruginosa infection. We conclude that the lectin pathway does not play an essential role in fighting P. aeruginosa infection in mice. |
---|---|
ISSN: | 0171-2985 1878-3279 |
DOI: | 10.1016/j.imbio.2011.10.001 |