c-MYC promoter G-quadruplex formed at the 5'-end of NHE III sub(1) element: insights into biological relevance and parallel-stranded G-quadruplex stability

We studied the structures and stabilities of G-quadruplexes formed in Myc1234, the region containing the four consecutive 5' runs of guanines of c-MYC promoter NHE III sub(1,) which have recently been shown to form in a supercoiled plasmid system in aqueous solution. We determined the NMR solut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2011-11, Vol.39 (20), p.9023-9033
Hauptverfasser: Mathad, Raveendra I, Hatzakis, Emmanuel, Dai, Jixun, Yang, Danzhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We studied the structures and stabilities of G-quadruplexes formed in Myc1234, the region containing the four consecutive 5' runs of guanines of c-MYC promoter NHE III sub(1,) which have recently been shown to form in a supercoiled plasmid system in aqueous solution. We determined the NMR solution structure of the 1:2:1 parallel-stranded loop isomer, one of the two major loop isomers formed in Myc1234 in K super(+) solution. This major loop isomer, although sharing the same folding structure, appears to be markedly less stable than the major loop isomer formed in the single-stranded c-MYC NHE III sub(1) oligonucleotide, the Myc2345 G-quadruplex. Our NMR structures indicated that the different thermostabilities of the two 1:2:1 parallel c-MYC G-quadruplexes are likely caused by the different base conformations of the single nucleotide loops. The observation of the formation of the Myc1234 G-quadruplex in the supercoiled plasmid thus points to the potential role of supercoiling in the G-quadruplex formation in promoter sequences. We also performed a systematic thermodynamic analysis of modified c-MYC NHE III sub(1) sequences, which provided quantitative measure of the contributions of various loop sequences to the thermostabilities of parallel-stranded G-quadruplexes. This information is important for understanding the equilibrium of promoter G-quadruplex loop isomers and for their drug targeting.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkr612