Complete polarization control of light from a liquid crystal spatial light modulator

We present a method to generate complete arbitrary spatially variant polarization modulation of a light beam by means of a parallel aligned nematic liquid crystal spatial light modulator (SLM). We first analyze the polarization modulation properties in a transmission mode. We encode diffraction grat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2012-01, Vol.20 (1), p.364-376
Hauptverfasser: Moreno, Ignacio, Davis, Jeffrey A, Hernandez, Travis M, Cottrell, Don M, Sand, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a method to generate complete arbitrary spatially variant polarization modulation of a light beam by means of a parallel aligned nematic liquid crystal spatial light modulator (SLM). We first analyze the polarization modulation properties in a transmission mode. We encode diffraction gratings onto the SLM and show how to achieve partial polarization control of the zero order transmitted light. We then extend the technique to a double modulation scheme, which is implemented using a single SLM divided in two areas in a reflective configuration. The polarization states of the transmitted beam from the first pass through the first area are rotated using two passes through a quarter wave plate. The beam then passes through the second area of the SLM where additional polarization information can be encoded. By combining previously reported techniques, we can achieve complete amplitude, phase and polarization control for the diffracted light that allows the creation of arbitrary diffractive optical elements including polarization control. Theoretical analysis based on the Jones matrix formalism, as well as excellent experimental results are presented.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.20.000364