Frontiers in bronchoscopic imaging
ABSTRACT Bronchoscopy is a minimally invasive method for diagnosis of diseases of the airways and the lung parenchyma. Standard bronchoscopy uses the reflectance/scattering properties of white light from tissue to examine the macroscopic appearance of airways. It does not exploit the full spectrum o...
Gespeichert in:
Veröffentlicht in: | Respirology (Carlton, Vic.) Vic.), 2012-02, Vol.17 (2), p.261-269 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
Bronchoscopy is a minimally invasive method for diagnosis of diseases of the airways and the lung parenchyma. Standard bronchoscopy uses the reflectance/scattering properties of white light from tissue to examine the macroscopic appearance of airways. It does not exploit the full spectrum of the optical properties of bronchial tissues. Advances in optical imaging such as optical coherence tomography (OCT), confocal endomicroscopy, autofluorescence imaging and laser Raman spectroscopy are at the forefront to allow in vivo high‐resolution probing of the microscopic structure, biochemical compositions and even molecular alterations in disease states. OCT can visualize cellular and extracellular structures at and below the tissue surface with near histological resolution, as well as to provide three‐dimensional imaging of the airways. Cellular and subcellular imaging can be achieved using confocal endomicroscopy or endocytoscopy. Contrast associated with light absorption by haemoglobin can be used to highlight changes in microvascular structures in the subepithelium using narrow‐band imaging. Blood vessels in the peribronchial space can be displayed using Doppler OCT. Biochemical compositions can be analysed with laser Raman spectroscopy, autofluorescence or multispectral imaging. Clinically, autofluorescence and narrow‐band imaging have been found to be useful for localization of preneoplastic and neoplastic bronchial lesions. OCT can differentiate carcinoma in situ versus microinvasive cancer. Endoscopic optical imaging is a promising technology that can expand the horizon for studying the pathogenesis and progression of airway diseases such as COPD and asthma, as well as to evaluate the effect of novel therapy. |
---|---|
ISSN: | 1323-7799 1440-1843 |
DOI: | 10.1111/j.1440-1843.2011.02108.x |