Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system

The effects of disinfection and biofilm on the corrosion of cast iron pipe in a model reclaimed water distribution system were studied using annular reactors (ARs). The corrosion scales formed under different conditions were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2012-03, Vol.46 (4), p.1070-1078
Hauptverfasser: Wang, Haibo, Hu, Chun, Hu, Xuexiang, Yang, Min, Qu, Jiuhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of disinfection and biofilm on the corrosion of cast iron pipe in a model reclaimed water distribution system were studied using annular reactors (ARs). The corrosion scales formed under different conditions were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM), while the bacterial characteristics of biofilm on the surface were determined using several molecular methods. The corrosion scales from the ARs with chlorine included predominantly α-FeOOH and Fe 2O 3, while CaPO 3(OH)·2H 2O and α-FeOOH were the predominant phases after chloramines replaced chlorine. Studies of the consumption of chlorine and iron release indicated that the formation of dense oxide layers and biofilm inhibited iron corrosion, causing stable lower chlorine decay. It was verified that iron-oxidizing bacteria (IOB) such as Sediminibacterium sp., and iron-reducing bacteria (IRB) such as Shewanella sp., synergistically interacted with the corrosion product to prevent further corrosion. For the ARs without disinfection, α-FeOOH was the predominant phase at the primary stage, while CaCO 3 and α-FeOOH were predominant with increasing time. The mixed corrosion-inducing bacteria, including the IRB Shewanella sp., the IOB Sediminibacterium sp., and the sulfur-oxidizing bacteria (SOB) Limnobacter thioxidans strain, promoted iron corrosion by synergistic interactions in the primary period, while anaerobic IRB became the predominant corrosion bacteria, preventing further corrosion via the formation of protective layers. [Display omitted] ► Effects of disinfectant and biofilm on the iron corrosion were investigated. ► SOB and IOB/IRB promoted iron corrosion by synergistic interaction originally. ► Anaerobic IRB interacted with the corroded layers preventing further corrosion. ► Chlorine or chloramines promoted iron corrosion. ► The formation of dense oxide layers and biofilm inhibited iron corrosion.
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2011.12.001