Portfolio selection with qualitative input

We formulate a mean-variance portfolio selection problem that accommodates qualitative input about expected returns and provide an algorithm that solves the problem. This model and algorithm can be used, for example, when a portfolio manager determines that one industry will benefit more from a regu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of banking & finance 2012-02, Vol.36 (2), p.489-496
Hauptverfasser: Chiarawongse, Anant, Kiatsupaibul, Seksan, Tirapat, Sunti, Roy, Benjamin Van
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We formulate a mean-variance portfolio selection problem that accommodates qualitative input about expected returns and provide an algorithm that solves the problem. This model and algorithm can be used, for example, when a portfolio manager determines that one industry will benefit more from a regulatory change than another but is unable to quantify the degree of difference. Qualitative views are expressed in terms of linear inequalities among expected returns. Our formulation builds on the Black-Litterman model for portfolio selection. The algorithm makes use of an adaptation of the hit-and-run method for Markov chain Monte Carlo simulation. We also present computational results that illustrate advantages of our approach over alternative heuristic methods for incorporating qualitative input. [PUBLICATION ABSTRACT]
ISSN:0378-4266
1872-6372
DOI:10.1016/j.jbankfin.2011.08.005