Multi-variable sensitivity and identifiability analysis for a complex environmental model in view of integrated water quantity and water quality modeling

Environmental models are often over-parameterized. A sensitivity analysis can identify influential model parameters for, e.g. the parameter estimation process, model development, research prioritization and so on. This paper presents the results of an extensive study of the Latin-Hypercube-One-facto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2012-01, Vol.65 (3), p.539-549
Hauptverfasser: Nossent, Jiri, Bauwens, Willy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Environmental models are often over-parameterized. A sensitivity analysis can identify influential model parameters for, e.g. the parameter estimation process, model development, research prioritization and so on. This paper presents the results of an extensive study of the Latin-Hypercube-One-factor-At-a-Time (LH-OAT) procedure applied to the Soil and Water Assessment Tool (SWAT). The LH-OAT is a sensitivity analysis method that can be categorized as a screening method. The results of the sensitivity analyses for all output variables indicate that the SWAT model of the river Kleine Nete is mainly sensitive to flow related parameters. Rarely, water quality parameters get a high priority ranking. It is observed that the number of intervals used for the Latin-Hypercube sampling should be sufficiently high to achieve converged parameter rankings. Additionally, it is noted that the LH-OAT method can enhance the understanding of the model, e.g. on the use of water quality input data.
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2012.884