Quinoacridine Derivatives with One-Dimensional Aggregation-Induced Red Emission Property

A new series of acceptor–donor–acceptor (A–D–A) type quinoacridine derivatives (1–3) with aggregation-induced red emission properties were designed and synthesized. In these compounds, the electron-withdrawing 2-(3,5-bis(trifluoromethyl)phenyl)acetonitrile groups act as electron-accepting units, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2012-01, Vol.28 (2), p.1439-1446
Hauptverfasser: Javed, Iqbal, Zhou, Tianlei, Muhammad, Faheem, Guo, Jianhua, Zhang, Hongyu, Wang, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new series of acceptor–donor–acceptor (A–D–A) type quinoacridine derivatives (1–3) with aggregation-induced red emission properties were designed and synthesized. In these compounds, the electron-withdrawing 2-(3,5-bis(trifluoromethyl)phenyl)acetonitrile groups act as electron-accepting units, while the alkyl-substituted conjugated core acts as electron-donating units. The restriction of intramolecular rotation was responsible for the AIE behavior of compounds 1–3. All compounds were employed as building blocks to fabricate one-dimensional (1-D) organic luminescent nano- or microwires based on reprecipitation or slow evaporation approaches. Morphological transition from zero-dimensional (0-D) hollow nanospheres to 1-D nanotubes has been observed by recording SEM and TEM images of aggregated sates of compound 2 in THF/H2O mixtures at different aging time. It was demonstrated that the synthesized compounds with different lengths of alkyl chains displayed different wire formation properties. The single-crystal X-ray analysis of compound 2 provided reasonable explanation for the formation of 1-D nano- or microstructures.
ISSN:0743-7463
1520-5827
DOI:10.1021/la202755z