Significance of T helper 17 immunity in transplantation

The aim of this review is to provide an overview of significance of T helper 17 (Th17) immunity in acute, chronic and antibody-mediated allograft rejection. The role of Th17 immunity in development of de-novo autoimmunity following transplantation is outlined. It will also consider the impact of Th1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in organ transplantation 2012-02, Vol.17 (1), p.8-14
Hauptverfasser: Abadja, Farida, Sarraj, Bara, Ansari, Mohammed J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this review is to provide an overview of significance of T helper 17 (Th17) immunity in acute, chronic and antibody-mediated allograft rejection. The role of Th17 immunity in development of de-novo autoimmunity following transplantation is outlined. It will also consider the impact of Th17 immunity on transplantation tolerance. Potential therapies to target Th17 immunity are discussed. Interleukin17 (IL-17) is produced by a wide variety of immune and non-immune cells in response to injury. IL-17 production by tubular epithelial cells in response to complement activation in acute antibody-mediated rejection may perpetuate immune injury. Th17-dependent de-novo autoimmunity contributes to chronic allograft rejection. Targeting IL-17 not only inhibits Th17 immunity but also attenuates Th1 immunity by affecting the initial recruitment of immune cells to sites of inflammation and modulates innate and adaptive immune responses that ultimately lead to tissue destruction. Th17 immunity is now beginning to be appreciated as a set of responses mediated not only by CD4 Th17 cells but a variety of immune cells and a plethora of cytokines that collaborate to mediate immune disorders, including transplant rejection. Development and contribution of de-novo autoimmunity to chronic rejection is increasingly appreciated. The developmental plasticity of Tregs and Th17 cells is a major hurdle to Treg-based cellular therapies for transplantation. Several biologics targeting Th17 immunity are under evaluation for autoimmune disease. It remains to be determined whether these can be used in transplantation to improve outcomes.
ISSN:1087-2418
1531-7013
DOI:10.1097/MOT.0b013e32834ef4e4