Metal-organic frameworks post-synthetically modified with ferrocenyl groups: framework effects on redox processes and surface conduction

Metal-organic framework (MOF) materials based on zinc(II) and aluminium(III) dicarboxylate frameworks with covalently attached ferrocene functional redox groups were synthesised by post-synthetic modification and investigated by voltammetry in aqueous and non-aqueous media. In the voltammetry experi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2012-01, Vol.41 (5), p.1475-1480
Hauptverfasser: Halls, Jonathan E, Hernán-Gómez, Alberto, Burrows, Andrew D, Marken, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal-organic framework (MOF) materials based on zinc(II) and aluminium(III) dicarboxylate frameworks with covalently attached ferrocene functional redox groups were synthesised by post-synthetic modification and investigated by voltammetry in aqueous and non-aqueous media. In the voltammetry experiments, ferrocene oxidation occurs in all cases, but chemically reversible and stable ferrocene oxidation without decay of the voltammetric response requires a "mild" dichloroethane solvent environment. The voltammetric response in this case is identified as "surface-confined" with fast surface-hopping of electrons and without affecting the bulk of MOF microcrystals. In aqueous media a more complex pH-dependent multi-stage redox process is observed associated with chemically irreversible bulk oxidation and disintegration of the MOF framework. A characteristic 30 mV per pH unit dependence of redox potentials is observed attributed to a "framework effect": the hydroxide-driven MOF framework dissolution.
ISSN:1477-9226
1477-9234
DOI:10.1039/c1dt10734h