A novel thin-film temperature and heat-flux microsensor for heat transfer measurements in microchannels

Temperature and heat-flux measurement at the microscale for convective heat-transfer studies requires highly precise, minimally intrusive sensors. For this purpose, a new generic temperature and heat-flux sensor was designed, calibrated and tested. The sensor allows measurement of temperature and he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2012-01, Vol.12 (3), p.652-658
Hauptverfasser: Hamadi, David, Garnier, Bertrand, Willaime, Herve, Monti, Fabrice, Peerhossaini, Hassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Temperature and heat-flux measurement at the microscale for convective heat-transfer studies requires highly precise, minimally intrusive sensors. For this purpose, a new generic temperature and heat-flux sensor was designed, calibrated and tested. The sensor allows measurement of temperature and heat flux distributions along the direction of flow. It is composed of forty gold thermoresistances, 85 nm thick, deposited on both sides of a borosilicate substrate. Their sensitivities are about 37.8 μV K(-1), close to those of a K-type wire thermocouple. Using a thermoelectrical model, temperature biases due to the Joule effect were calculated using the current crossing each thermoresistance and the heat-transfer coefficient. Finally, heat-transfer measurements were performed with deionized water flowing in a straight PDMS microchannel for various Reynolds numbers. The Nusselt number was obtained for microchannels of 50 to 10 μm span. The results were found to be in good agreement with classical Nu-Re macroscopic correlations.
ISSN:1473-0197
1473-0189
DOI:10.1039/c2lc20919e