Temporal and spatial expression patterns of Cdc25 phosphatase isoforms during early Xenopus development

In early animal development, cell proliferation and differentiation are tightly linked and coordinated. It is important, therefore, to know how the cell cycle is controlled during early development. Cdc25 phosphatases activate cyclin-dependent kinases (Cdks) and thereby promote cell-cycle progressio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of developmental biology 2011, Vol.55 (6), p.627-632
Hauptverfasser: Nakajo, Nobushige, Deno, Yu-Ki, Ueno, Hiroyuki, Kenmochi, Chihiro, Shimuta, Ken, Sagata, Noriyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In early animal development, cell proliferation and differentiation are tightly linked and coordinated. It is important, therefore, to know how the cell cycle is controlled during early development. Cdc25 phosphatases activate cyclin-dependent kinases (Cdks) and thereby promote cell-cycle progression. In Xenopus laevis, three isoforms of cdc25 have been identified, viz. cdc25A, cdc25B and cdc25C. In this study, we isolated a cDNA encoding a novel Xenopus Cdc25 phosphatase (named cdc25D). We investigated the temporal and spatial expression patterns of the four cdc25 isoforms during early Xenopus development, using RT-PCR and whole-mount in situ hybridization. cdc25A and cdc25C were expressed both maternally and zygotically, whereas cdc25B and cdc25D were expressed zygotically. Both cdc25A and cdc25C were expressed mainly in prospective neural regions, whereas cdc25B was expressed preferentially in the central nervous system (CNS), such as the spinal cord and the brain. Interestingly, cdc25D was expressed in the epidermal ectoderm of the late-neurula embryo, and in the liver diverticulum endoderm of the mid-tailbud embryo. In agreement with the spatial expression patterns in whole embryos, inhibition of bone morphoge- netic protein (BMP), a crucial step for neural induction, induced an upregulation of cdc25B, but a downregulation of cdc25D in animal cap assays.These results indicate that different cdc25 isoforms are differently expressed and play different roles during early Xenopus development.
ISSN:0214-6282
1696-3547
DOI:10.1387/ijdb.113287nn