Identification of Small Molecule Activators of the Janus Kinase/Signal Transducer and Activator of Transcription Pathway Using a Cell-Based Screen

Type I interferons (IFN-α/β) have been widely used in the treatment of many viral and malignant diseases by activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, but the side effects of protein-based IFN therapy severely limit their clinical us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological & pharmaceutical bulletin 2012/01/01, Vol.35(1), pp.65-71
Hauptverfasser: Tai, Zheng Fu, Zhang, Guo Lin, Wang, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Type I interferons (IFN-α/β) have been widely used in the treatment of many viral and malignant diseases by activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, but the side effects of protein-based IFN therapy severely limit their clinical use. Discovering small molecules to activate the JAK/STAT pathway will greatly facilitate the development of new drugs which have similar pharmacological function to IFNs but with fewer side effects. To screen a natural products-based library, we established a cell-based screening assay using human hepatoma HepG2 cells stably transfected with a plasmid where the luciferase reporter activity is driven by interferon α-stimulated response element (ISRE), the motif specifically recognized by type I IFN-induced activation of JAK/STAT pathway. Among 1,431 natural product compounds screened, four compounds (emodin, quercetin, apigenin and luteolin) were identified as activators of the JAK/STAT pathway. Further studies demonstrated that these four compounds could increase the endogenous antiviral gene expression regulated by the IFN-activated JAK/STAT pathway. The identified small molecule activators are valuable for structural modification and warrant further investigation for use in new antiviral drugs as IFN mimics or adjuvants.
ISSN:0918-6158
1347-5215
DOI:10.1248/bpb.35.65