Electron density distribution and bonding in ZnSe and PbSe using maximum entropy method (MEM)
The study of electronic structure of materials and bonding is an important part of material characterization. The maximum entropy method (MEM) is a powerful tool for deriving accurate electron density distribution in crystalline materials using experimental data. In this paper, the attention is focu...
Gespeichert in:
Veröffentlicht in: | Bulletin of materials science 2006-04, Vol.29 (2), p.107-114 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The study of electronic structure of materials and bonding is an important part of material characterization. The maximum entropy method (MEM) is a powerful tool for deriving accurate electron density distribution in crystalline materials using experimental data. In this paper, the attention is focused on producing electron density distribution of ZnSe and PbSe using JCPDS X-ray powder diffraction data. The covalent/ ionic nature of the bonding and the interaction between the atoms are clearly revealed by the MEM maps. The mid bond electron densities between atoms in these systems are found to be 0.544 e/Å3 and 0–261 e/Å3, respectively for ZnSe and PbSe. The bonding in these two systems has been studied using two-dimensional MEM electron density maps on the (100) and (110) planes, and the one-dimensional electron density profiles along [100], [110] and [111] directions. The thermal parameters of the individual atoms have also been reported in this work. The algorithm of the MEM procedure has been presented. |
---|---|
ISSN: | 0250-4707 0973-7669 |
DOI: | 10.1007/BF02704601 |