Chaotic self-pulsation and cross-modulation in a wavelength-selective external-cavity laser diode

Chaotic self-pulsation in a single wavelength external-cavity laser diode is observed. It is shown that the self-pulsation is caused by interdependencies between the optical output power and the compound cavity losses through the refractive index of the laser diode material. Refractive index changes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of quantum electronics 2001-07, Vol.37 (7), p.911-918
Hauptverfasser: Mos, E.C., t Hooft, G.W., Schleipen, J.J.H.B., de Waardt, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chaotic self-pulsation in a single wavelength external-cavity laser diode is observed. It is shown that the self-pulsation is caused by interdependencies between the optical output power and the compound cavity losses through the refractive index of the laser diode material. Refractive index changes result in a detuning between the externally selected wavelength and the weak internal-mode structure of the anti-reflection coated laser diode. This detuning is directly related to the compound cavity losses. On the one hand, a change in optical output power results in a change of the refractive index via the carrier density. On the other hand, it results in a change of refractive index via temperature changes. Compared to the carrier induced refractive index change, the temperature induced refractive index change is opposite in sign, a factor of /spl sim/10/sup 2/ smaller and slower. The switch-on and switch-off time of the self-pulsation is governed by the carrier life time. The repetition rate of the self-pulsation is governed by the thermal time constant and is in the megahertz region. Cross-modulation resulting from the thermal induced refractive index change is demonstrated. In a two-wavelength double external-cavity laser diode, optical power at one wavelength effects the optical power at the other wavelength. This cross-modulation is shown to be related to previous experiments on a laser neural network. A novel technique is introduced to measure the thermal impedance of a laser diode that is based on the cross-modulation.
ISSN:0018-9197
1558-1713
DOI:10.1109/3.929591