Feedforward networks training speed enhancement by optimal initialization of the synaptic coefficients

This letter aims at determining the optimal bias and magnitude of initial weight vectors based on multidimensional geometry. This method ensures the outputs of neurons are in the active region and the range of the activation function is fully utilized. In this letter, very thorough simulations and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2001-03, Vol.12 (2), p.430-434
Hauptverfasser: Yam, J.Y.F., Chow, T.W.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter aims at determining the optimal bias and magnitude of initial weight vectors based on multidimensional geometry. This method ensures the outputs of neurons are in the active region and the range of the activation function is fully utilized. In this letter, very thorough simulations and comparative study were performed to validate the performance of the proposed method. The obtained results on five well-known benchmark problems demonstrate that the proposed method deliver consistent good results compared with other weight initialization methods.
ISSN:1045-9227
2162-237X
1941-0093
2162-2388
DOI:10.1109/72.914538