A Stable Neuro-Adaptive Controller for Rigid Robot Manipulators

In this paper a controller based on neural networks is proposed toachieve output trajectory tracking of rigid robot manipulators. Neuralnetworks used here are one hidden layer ones so that their outputs dependlinearly on the parameters. Our method uses a decomposed connectioniststructure. Each neura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 1997-09, Vol.20 (2-4), p.181-193
Hauptverfasser: Meddah, D Y, Benallegue, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper a controller based on neural networks is proposed toachieve output trajectory tracking of rigid robot manipulators. Neuralnetworks used here are one hidden layer ones so that their outputs dependlinearly on the parameters. Our method uses a decomposed connectioniststructure. Each neural network approximate a separate element of thedynamical model. These approximations are used to perform an adaptive stablecontrol law. The controller is based on direct adaptive techniques and theLyapunov approach is used to derive the adaptation laws of the nets'parameters. By using an intrinsic physical property of the manipulator, thesystem is proved to be stable. The performance of the controller depends onthe quality of the approximation, i.e. on the inherent reconstruction errorsof the exact functions.[PUBLICATION ABSTRACT]
ISSN:0921-0296
1573-0409
DOI:10.1023/A:1007904210780