Structure and properties of differently directed deformed niobium-titanium alloy

Cylindrical blanks of Nb-48.5 wt.%Ti alloy were prepared with a variable degree of plastic strain at different temperatures of the treatment by using the thermomechanical treatment consisting of deformation of the ingot via upsetting in a closed container and its subsequent extrusion from this conta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2005-06, Vol.15 (2), p.3502-3505
Hauptverfasser: Chernyi, O.V., Storozhilov, G.E., Andrievskaya, N.F., Ilichova, V.O., Starodubov, Y.D., Volchok, O.I., Chirkina, L.A., Lazareva, M.B., Okovit, V.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cylindrical blanks of Nb-48.5 wt.%Ti alloy were prepared with a variable degree of plastic strain at different temperatures of the treatment by using the thermomechanical treatment consisting of deformation of the ingot via upsetting in a closed container and its subsequent extrusion from this container to the initial size. The true strain value over one cycle of such a treatment is approximately 1.6, with the number of cycles varying from 1 to 5. Measurements were taken of strength, plastic and elastic characteristics of the differently directed deformed alloy over different stages of superconductor fabrication. TEM was used to study the microstructure of the alloy in the course of plastic deformation. It is established that such combined treatment promotes formation of a better homogeneous dispersed structure. With that the current characteristics of the niobium-titanium superconductor increase. The highest critical current density after such a treatment was 4.1 k/mm/sup 2/ under the applied magnetic field 5 T at 4.2 K.
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2005.849017