Analysis of Heat Load in a Superconducting Wiggler With a Semi-Cold UHV Beam Duct

A superconducting wiggler with a magnetic period of 6.0 cm (SW6) and a peak field of 3.2 T has been designed and fabricated in the National Synchrotron Radiation Research Center (NSRRC). The beam duct separates the electron beam from the cryogenic system of the magnet. The heat load on the beam duct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2006-06, Vol.16 (2), p.1320-1323
Hauptverfasser: Chen, H.H., Hwang, C.S., Chang, C.H., Lin, F.Y., Hsu, S.N., Chang, C.C., Hsiung, G.Y., Chen, J.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A superconducting wiggler with a magnetic period of 6.0 cm (SW6) and a peak field of 3.2 T has been designed and fabricated in the National Synchrotron Radiation Research Center (NSRRC). The beam duct separates the electron beam from the cryogenic system of the magnet. The heat load on the beam duct should be low to stabilize the operation of the superconducting magnets. However, outgassing caused by synchrotron radiation at an electron energy of 1.5 GeV and a current of 200 mA must be reduced. Accordingly, operating the system at a higher temperature can minimize the adsorption of molecules on the beam duct. Therefore, the beam duct system and its connection by finite element analysis are designed to optimize the operating temperature of the beam duct at between 100 and 120 K. Performance of the beam duct is established to comply with specifications during the operation of magnet
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2006.871211