Rated overload Characteristics of IGBTs for low-voltage and high-voltage devices
By a vertical shrink of the nonpunchthrough insulated gate bipolar transistor (NPT IGBT) to a structure with a thin n-base and a low-doped field stop layer a new IGBT can be realized with drastically reduced overall losses. In particular, the combination of the field stop concept with the trench tra...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2004-09, Vol.40 (5), p.1273-1280 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By a vertical shrink of the nonpunchthrough insulated gate bipolar transistor (NPT IGBT) to a structure with a thin n-base and a low-doped field stop layer a new IGBT can be realized with drastically reduced overall losses. In particular, the combination of the field stop concept with the trench transistor cell results in an almost ideal carrier concentration for a device with minimum on-state voltage and lowest switching losses. This concept has been developed for IGBTs and diodes from 600 V up to 6.5 kV. While the tradeoff behavior (on-state voltage V/sub CEsat/ or V/sub F/ to tail charge) and the overall ruggedness (short circuit, positive temperature coefficient in V/sub CEsat/, temperature independence in tail charge, etc.) is independent of voltage and current ratings the switching characteristics of the lower voltage parts (blocking voltage V/sub Br/2kV). With the HE-EMCON diode and the new field stop NPT IGBT up to 1700 V there is almost no limitation in the switching behavior, however, there are some considerations-a certain value in the external gate resistor has to be taken. High-voltage parts usually have lower current density compared to low-voltage transistors so that the "dynamic" electrical field strength is more critical in high-voltage diodes and IGBTs. |
---|---|
ISSN: | 0093-9994 1939-9367 |
DOI: | 10.1109/TIA.2004.834022 |