Divergence Estimation for Multidimensional Densities Via k-Nearest-Neighbor Distances

A new universal estimator of divergence is presented for multidimensional continuous densities based on k -nearest-neighbor ( k -NN) distances. Assuming independent and identically distributed (i.i.d.) samples, the new estimator is proved to be asymptotically unbiased and mean-square consistent. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2009-05, Vol.55 (5), p.2392-2405
Hauptverfasser: Qing Wang, Kulkarni, S.R., Verdu, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2405
container_issue 5
container_start_page 2392
container_title IEEE transactions on information theory
container_volume 55
creator Qing Wang
Kulkarni, S.R.
Verdu, S.
description A new universal estimator of divergence is presented for multidimensional continuous densities based on k -nearest-neighbor ( k -NN) distances. Assuming independent and identically distributed (i.i.d.) samples, the new estimator is proved to be asymptotically unbiased and mean-square consistent. In experiments with high-dimensional data, the k -NN approach generally exhibits faster convergence than previous algorithms. It is also shown that the speed of convergence of the k -NN method can be further improved by an adaptive choice of k .
doi_str_mv 10.1109/TIT.2009.2016060
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_914641652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4839047</ieee_id><sourcerecordid>914641652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-adc5ab6147472ebb7dd1f72e1ec74ba5d13795406683fc17c85e96262f70e263</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxYMoWKt3wcsiiKetmWw-NkexVQtVL9VryGZna3TbrclW8L83pcWDl8xM8nuPzCPkHOgIgOqb-XQ-YpTqdICkkh6QAQihci0FPyQDSqHMNeflMTmJ8SONXAAbkNex_8awwJXDbBJ7v7S971ZZ04XsadP2vvZLXMV0ZdtsvO16jzF78zb7zJ_RBox9qn7xXiXF2MfeJqd4So4a20Y829chmd9P5neP-ezlYXp3O8sdK1mf29oJW0ngiiuGVaXqGprUATrFKytqKJQWnEpZFo0D5UqBWjLJGkWRyWJIrne269B9bdJXzNJHh21rV9htotHAJQcpWCIv_5Ef3SakpaIBLXQhi0IkiO4gF7oYAzZmHVIg4ccANduQTQrZbEM2-5CT5Grva6OzbRPS-j7-6RgoziTfWl_sOI-If8-8LDTlqvgFYdWEvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195936335</pqid></control><display><type>article</type><title>Divergence Estimation for Multidimensional Densities Via k-Nearest-Neighbor Distances</title><source>IEEE Electronic Library (IEL)</source><creator>Qing Wang ; Kulkarni, S.R. ; Verdu, S.</creator><creatorcontrib>Qing Wang ; Kulkarni, S.R. ; Verdu, S.</creatorcontrib><description>A new universal estimator of divergence is presented for multidimensional continuous densities based on k -nearest-neighbor ( k -NN) distances. Assuming independent and identically distributed (i.i.d.) samples, the new estimator is proved to be asymptotically unbiased and mean-square consistent. In experiments with high-dimensional data, the k -NN approach generally exhibits faster convergence than previous algorithms. It is also shown that the speed of convergence of the k -NN method can be further improved by an adaptive choice of k .</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2009.2016060</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Asymptotic properties ; Convergence ; Density ; Density measurement ; Divergence ; Estimates ; Estimators ; Exact sciences and technology ; Experiments ; Frequency estimation ; information measure ; Information theory ; Information, signal and communications theory ; Kullback-Leibler ; Laboratories ; Methods ; Multidimensional systems ; Mutual information ; nearest-neighbor ; Neuroscience ; partition ; Partitioning algorithms ; Probability distribution ; random vector ; Telecommunications and information theory ; universal estimation</subject><ispartof>IEEE transactions on information theory, 2009-05, Vol.55 (5), p.2392-2405</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-adc5ab6147472ebb7dd1f72e1ec74ba5d13795406683fc17c85e96262f70e263</citedby><cites>FETCH-LOGICAL-c282t-adc5ab6147472ebb7dd1f72e1ec74ba5d13795406683fc17c85e96262f70e263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4839047$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4839047$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21742645$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Qing Wang</creatorcontrib><creatorcontrib>Kulkarni, S.R.</creatorcontrib><creatorcontrib>Verdu, S.</creatorcontrib><title>Divergence Estimation for Multidimensional Densities Via k-Nearest-Neighbor Distances</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>A new universal estimator of divergence is presented for multidimensional continuous densities based on k -nearest-neighbor ( k -NN) distances. Assuming independent and identically distributed (i.i.d.) samples, the new estimator is proved to be asymptotically unbiased and mean-square consistent. In experiments with high-dimensional data, the k -NN approach generally exhibits faster convergence than previous algorithms. It is also shown that the speed of convergence of the k -NN method can be further improved by an adaptive choice of k .</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Asymptotic properties</subject><subject>Convergence</subject><subject>Density</subject><subject>Density measurement</subject><subject>Divergence</subject><subject>Estimates</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Frequency estimation</subject><subject>information measure</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Kullback-Leibler</subject><subject>Laboratories</subject><subject>Methods</subject><subject>Multidimensional systems</subject><subject>Mutual information</subject><subject>nearest-neighbor</subject><subject>Neuroscience</subject><subject>partition</subject><subject>Partitioning algorithms</subject><subject>Probability distribution</subject><subject>random vector</subject><subject>Telecommunications and information theory</subject><subject>universal estimation</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1LAzEQxYMoWKt3wcsiiKetmWw-NkexVQtVL9VryGZna3TbrclW8L83pcWDl8xM8nuPzCPkHOgIgOqb-XQ-YpTqdICkkh6QAQihci0FPyQDSqHMNeflMTmJ8SONXAAbkNex_8awwJXDbBJ7v7S971ZZ04XsadP2vvZLXMV0ZdtsvO16jzF78zb7zJ_RBox9qn7xXiXF2MfeJqd4So4a20Y829chmd9P5neP-ezlYXp3O8sdK1mf29oJW0ngiiuGVaXqGprUATrFKytqKJQWnEpZFo0D5UqBWjLJGkWRyWJIrne269B9bdJXzNJHh21rV9htotHAJQcpWCIv_5Ef3SakpaIBLXQhi0IkiO4gF7oYAzZmHVIg4ccANduQTQrZbEM2-5CT5Grva6OzbRPS-j7-6RgoziTfWl_sOI-If8-8LDTlqvgFYdWEvA</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Qing Wang</creator><creator>Kulkarni, S.R.</creator><creator>Verdu, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20090501</creationdate><title>Divergence Estimation for Multidimensional Densities Via k-Nearest-Neighbor Distances</title><author>Qing Wang ; Kulkarni, S.R. ; Verdu, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-adc5ab6147472ebb7dd1f72e1ec74ba5d13795406683fc17c85e96262f70e263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Asymptotic properties</topic><topic>Convergence</topic><topic>Density</topic><topic>Density measurement</topic><topic>Divergence</topic><topic>Estimates</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Frequency estimation</topic><topic>information measure</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Kullback-Leibler</topic><topic>Laboratories</topic><topic>Methods</topic><topic>Multidimensional systems</topic><topic>Mutual information</topic><topic>nearest-neighbor</topic><topic>Neuroscience</topic><topic>partition</topic><topic>Partitioning algorithms</topic><topic>Probability distribution</topic><topic>random vector</topic><topic>Telecommunications and information theory</topic><topic>universal estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qing Wang</creatorcontrib><creatorcontrib>Kulkarni, S.R.</creatorcontrib><creatorcontrib>Verdu, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qing Wang</au><au>Kulkarni, S.R.</au><au>Verdu, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergence Estimation for Multidimensional Densities Via k-Nearest-Neighbor Distances</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>55</volume><issue>5</issue><spage>2392</spage><epage>2405</epage><pages>2392-2405</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>A new universal estimator of divergence is presented for multidimensional continuous densities based on k -nearest-neighbor ( k -NN) distances. Assuming independent and identically distributed (i.i.d.) samples, the new estimator is proved to be asymptotically unbiased and mean-square consistent. In experiments with high-dimensional data, the k -NN approach generally exhibits faster convergence than previous algorithms. It is also shown that the speed of convergence of the k -NN method can be further improved by an adaptive choice of k .</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2009.2016060</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2009-05, Vol.55 (5), p.2392-2405
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_914641652
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Asymptotic properties
Convergence
Density
Density measurement
Divergence
Estimates
Estimators
Exact sciences and technology
Experiments
Frequency estimation
information measure
Information theory
Information, signal and communications theory
Kullback-Leibler
Laboratories
Methods
Multidimensional systems
Mutual information
nearest-neighbor
Neuroscience
partition
Partitioning algorithms
Probability distribution
random vector
Telecommunications and information theory
universal estimation
title Divergence Estimation for Multidimensional Densities Via k-Nearest-Neighbor Distances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergence%20Estimation%20for%20Multidimensional%20Densities%20Via%20k-Nearest-Neighbor%20Distances&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Qing%20Wang&rft.date=2009-05-01&rft.volume=55&rft.issue=5&rft.spage=2392&rft.epage=2405&rft.pages=2392-2405&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2009.2016060&rft_dat=%3Cproquest_RIE%3E914641652%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195936335&rft_id=info:pmid/&rft_ieee_id=4839047&rfr_iscdi=true