Divergence Estimation for Multidimensional Densities Via k-Nearest-Neighbor Distances
A new universal estimator of divergence is presented for multidimensional continuous densities based on k -nearest-neighbor ( k -NN) distances. Assuming independent and identically distributed (i.i.d.) samples, the new estimator is proved to be asymptotically unbiased and mean-square consistent. In...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2009-05, Vol.55 (5), p.2392-2405 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new universal estimator of divergence is presented for multidimensional continuous densities based on k -nearest-neighbor ( k -NN) distances. Assuming independent and identically distributed (i.i.d.) samples, the new estimator is proved to be asymptotically unbiased and mean-square consistent. In experiments with high-dimensional data, the k -NN approach generally exhibits faster convergence than previous algorithms. It is also shown that the speed of convergence of the k -NN method can be further improved by an adaptive choice of k . |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2009.2016060 |