Divergence Estimation for Multidimensional Densities Via k-Nearest-Neighbor Distances

A new universal estimator of divergence is presented for multidimensional continuous densities based on k -nearest-neighbor ( k -NN) distances. Assuming independent and identically distributed (i.i.d.) samples, the new estimator is proved to be asymptotically unbiased and mean-square consistent. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2009-05, Vol.55 (5), p.2392-2405
Hauptverfasser: Qing Wang, Kulkarni, S.R., Verdu, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new universal estimator of divergence is presented for multidimensional continuous densities based on k -nearest-neighbor ( k -NN) distances. Assuming independent and identically distributed (i.i.d.) samples, the new estimator is proved to be asymptotically unbiased and mean-square consistent. In experiments with high-dimensional data, the k -NN approach generally exhibits faster convergence than previous algorithms. It is also shown that the speed of convergence of the k -NN method can be further improved by an adaptive choice of k .
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2009.2016060