On the linear minimum-mean-squared-error estimation of an undersampled wide-sense stationary random process
We consider the problem of linearly estimating, in the sense of minimum-mean-squared error, a wide-sense stationary process in noise given uniformly spaced samples where the sampling interval is such that significant aliasing occurs. We derive the corresponding aliased Wiener filter and provide a te...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2000-01, Vol.48 (1), p.272-275 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of linearly estimating, in the sense of minimum-mean-squared error, a wide-sense stationary process in noise given uniformly spaced samples where the sampling interval is such that significant aliasing occurs. We derive the corresponding aliased Wiener filter and provide a technique for determining a closed form for the necessary power spectral density functions. We conclude with an example where both signal and noise are modeled using a second-order innovations representation. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/78.815501 |