On the linear minimum-mean-squared-error estimation of an undersampled wide-sense stationary random process

We consider the problem of linearly estimating, in the sense of minimum-mean-squared error, a wide-sense stationary process in noise given uniformly spaced samples where the sampling interval is such that significant aliasing occurs. We derive the corresponding aliased Wiener filter and provide a te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2000-01, Vol.48 (1), p.272-275
1. Verfasser: Matthews, M.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of linearly estimating, in the sense of minimum-mean-squared error, a wide-sense stationary process in noise given uniformly spaced samples where the sampling interval is such that significant aliasing occurs. We derive the corresponding aliased Wiener filter and provide a technique for determining a closed form for the necessary power spectral density functions. We conclude with an example where both signal and noise are modeled using a second-order innovations representation.
ISSN:1053-587X
1941-0476
DOI:10.1109/78.815501