On-chip spiral inductors suspended over deep copper-lined cavities

A silicon micromachining method has been developed to fabricate on-chip high-performance suspended spiral inductors. The spiral structure of an inductor was formed with polysilicon and was suspended over a 30-/spl mu/m-deep cavity in the silicon substrate beneath. Copper (Cu) was electrolessly plate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2000-12, Vol.48 (12), p.2415-2423
Hauptverfasser: Hongrui Jiang, Ye Wang, Yeh, J.-L.A., Tien, N.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A silicon micromachining method has been developed to fabricate on-chip high-performance suspended spiral inductors. The spiral structure of an inductor was formed with polysilicon and was suspended over a 30-/spl mu/m-deep cavity in the silicon substrate beneath. Copper (Cu) was electrolessly plated onto the polysilicon spiral to achieve low resistance. The Cu plating process also metallized the inner surfaces of the cavity, forming both a good radio-frequency (RF) ground and an electromagnetic shield. High quality factors (Qs) over 30 and self-resonant frequencies higher than 10 GHz have been achieved. A study of the mechanical properties of the suspended inductors indicates that they can withstand large shock and vibration. Simulation predicts a reduction of an order of magnitude in the mutual inductance of two adjacent inductors with the 30-/spl mu/m-deep Cu-lined cavity from that with silicon as the substrate. This indicates very small crosstalk between the inductors due to the shielding effect of the cavities.
ISSN:0018-9480
1557-9670
DOI:10.1109/22.898992