Robustness of exponential stability of a class of stochastic functional differential equations with infinite delay

We regard the stochastic functional differential equation with infinite delay d x ( t ) = f ( x t ) d t + g ( x t ) d w ( t ) as the result of the effects of stochastic perturbation to the deterministic functional differential equation x ̇ ( t ) = f ( x t ) , where x t = x t ( θ ) ∈ C ( ( − ∞ , 0 ]...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2009-11, Vol.45 (11), p.2577-2584
Hauptverfasser: Hu, Yangzi, Wu, Fuke, Huang, Chengming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We regard the stochastic functional differential equation with infinite delay d x ( t ) = f ( x t ) d t + g ( x t ) d w ( t ) as the result of the effects of stochastic perturbation to the deterministic functional differential equation x ̇ ( t ) = f ( x t ) , where x t = x t ( θ ) ∈ C ( ( − ∞ , 0 ] ; R n ) is defined by x t ( θ ) = x ( t + θ ) , θ ∈ ( − ∞ , 0 ] . We assume that the deterministic system with infinite delay is exponentially stable. In this paper, we shall characterize how much the stochastic perturbation can bear such that the corresponding stochastic functional differential system still remains exponentially stable.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2009.07.007