Robustness of exponential stability of a class of stochastic functional differential equations with infinite delay
We regard the stochastic functional differential equation with infinite delay d x ( t ) = f ( x t ) d t + g ( x t ) d w ( t ) as the result of the effects of stochastic perturbation to the deterministic functional differential equation x ̇ ( t ) = f ( x t ) , where x t = x t ( θ ) ∈ C ( ( − ∞ , 0 ]...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 2009-11, Vol.45 (11), p.2577-2584 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We regard the stochastic functional differential equation with infinite delay
d
x
(
t
)
=
f
(
x
t
)
d
t
+
g
(
x
t
)
d
w
(
t
)
as the result of the effects of stochastic perturbation to the deterministic functional differential equation
x
̇
(
t
)
=
f
(
x
t
)
, where
x
t
=
x
t
(
θ
)
∈
C
(
(
−
∞
,
0
]
;
R
n
)
is defined by
x
t
(
θ
)
=
x
(
t
+
θ
)
,
θ
∈
(
−
∞
,
0
]
. We assume that the deterministic system with infinite delay is exponentially stable. In this paper, we shall characterize how much the stochastic perturbation can bear such that the corresponding stochastic functional differential system still remains exponentially stable. |
---|---|
ISSN: | 0005-1098 1873-2836 |
DOI: | 10.1016/j.automatica.2009.07.007 |