Effects of osteoporosis and nutrition supplements on structures and nanomechanical properties of bone tissue

In this study, the bone structures, nanomechanical properties and fracture behaviors in different groups of female C57BL/6 mice (control, sham operated, ovariectomized, casein supplemented, and fermented milk supplemented) were examined by micro-computed tomography, scanning and transmission electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2011-10, Vol.4 (7), p.1412-1420
Hauptverfasser: Chang, Yuan-Ting, Chen, Chuan-Mu, Tu, Min-Yu, Chen, Hsiao-Ling, Chang, Shou-Yi, Tsai, Tung-Chou, Wang, Ying-Ting, Hsiao, Hsiang-Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the bone structures, nanomechanical properties and fracture behaviors in different groups of female C57BL/6 mice (control, sham operated, ovariectomized, casein supplemented, and fermented milk supplemented) were examined by micro-computed tomography, scanning and transmission electron microscopy, and nanoindentation. The control and sham operated mice showed dense bone structures with high cortical bone mineral densities of 544 mg/cm 3 (average) and high hardness of 0.9–1.1 GPa; resistance to bone fracture was conferred by microcracking, crack deflections and ligament bridging attributed to aligned collagen fibers and densely packed hydroxyapatite crystals. Bone mineral density, hardness and fracture resistance in ovariectomized mice markedly dropped due to loose bone structure with randomly distributed collagens and hydroxyapatites. The acidic casein supplemented mice with blood acidosis exhibited poor mineral absorption and loose bone structure, whereas the neutralized casein or fermented milk supplemented mice were resistant to osteoporosis and had high bone mechanical properties. [Display omitted]
ISSN:1751-6161
1878-0180
DOI:10.1016/j.jmbbm.2011.05.011