Emulsifying properties of sweet potato protein: Effect of protein concentration and oil volume fraction

The effect of protein concentrations (0.1, 0.25, 0.5, 1.0, 1.5 and 2.0% w/v) and oil volume fractions (5, 15, 25, 35 and 45% v/v) on properties of stabilized emulsions of sweet potato proteins (SPPs) were investigated by use of the emulsifying activity index (EAI), emulsifying stability index (ESI),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food hydrocolloids 2011, Vol.25 (1), p.98-106
Hauptverfasser: Guo, Q., Mu, T.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of protein concentrations (0.1, 0.25, 0.5, 1.0, 1.5 and 2.0% w/v) and oil volume fractions (5, 15, 25, 35 and 45% v/v) on properties of stabilized emulsions of sweet potato proteins (SPPs) were investigated by use of the emulsifying activity index (EAI), emulsifying stability index (ESI), droplet size, rheological properties, interfacial properties and optical microscopy measurements at neutral pH. The protein concentration or oil volume fraction significantly affected droplet size, interfacial protein concentration, emulsion apparent viscosity, EAI and ESI. Increasing of protein concentration greatly decreased droplet size, EAI and apparent viscosity of SPP emulsions; however, there was a pronounced increase in ESI and interfacial protein concentration ( P < 0.05). In contrast, increasing of oil volume fraction greatly increased droplet size, EAI and emulsion apparent viscosity of SPP emulsions, but decreased ESI and interfacial protein concentration significantly ( P < 0.05). The rheological curve suggested that SPP emulsions were shear-thinning non-Newtonian fluids. Optical microscopy clearly demonstrated that droplet aggregates were formed at a lower protein concentration of 25% (v/v) there was obvious coalescence. In addition, the main components of adsorbed SPP at the oil–water interface were Sporamin A, Sporamin B and some high-molecular-weight aggregates formed by disulfide linkage. [Display omitted]
ISSN:0268-005X
1873-7137
DOI:10.1016/j.foodhyd.2010.05.011