Upscaling and Simulation of Waterflooding in Heterogeneous Reservoirs Using Wavelet Transformations: Application to the SPE-10 Model
We have developed an accurate and highly efficient method for upscaling and simulation of immiscible displacements in three-dimensional (3D) heterogeneous reservoirs, which is an extension of the technique that we developed previously for 2D systems. The method utilizes wavelet transformations (WTs)...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2008-04, Vol.72 (3), p.311-338 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have developed an accurate and highly efficient method for upscaling and simulation of immiscible displacements in three-dimensional (3D) heterogeneous reservoirs, which is an extension of the technique that we developed previously for 2D systems. The method utilizes wavelet transformations (WTs) to upscale the geological model of a reservoir, based on the spatial distribution of the single-phase permeabilities and the locations of the wells in the reservoir. It generates a non-uniform grid in which the resolved structure of the fine grid around the wells, as well as in the high-permeability sectors, are preserved, but the rest of the grid is upscaled. A robust uplayering procedure is used to reduce the number of the layers, and the WTs are used to upscale each layer areally. To demonstrate the method’s accuracy and efficiency, we have applied it to the geological model of a highly heterogeneous reservoir put forward in the tenth Society of Petroleum Engineers comparative solution project (the SPE-10 model), and carried out simulation of waterflooding in the upscaled model. Various upscaling scenarios were examined, and although some of them resulted in efficient simulations and accurate predictions, the results when non-uniform upscaling is used based on the WT technique are in excellent agreement with the solution of the same problem in the fine grid of the SPE-10 model. Most importantly, the speed-up factors that we obtain are several orders of magnitude. Hence, the method renders it unnecessary to use massively parallel computations for such problems. |
---|---|
ISSN: | 0169-3913 1573-1634 |
DOI: | 10.1007/s11242-007-9152-1 |