On ontology-driven document clustering using core semantic features

Incorporating semantic knowledge from an ontology into document clustering is an important but challenging problem. While numerous methods have been developed, the value of using such an ontology is still not clear. We show in this paper that an ontology can be used to greatly reduce the number of f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge and information systems 2011-08, Vol.28 (2), p.395-421
Hauptverfasser: Fodeh, Samah, Punch, Bill, Tan, Pang-Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Incorporating semantic knowledge from an ontology into document clustering is an important but challenging problem. While numerous methods have been developed, the value of using such an ontology is still not clear. We show in this paper that an ontology can be used to greatly reduce the number of features needed to do document clustering. Our hypothesis is that polysemous and synonymous nouns are both relatively prevalent and fundamentally important for document cluster formation. We show that nouns can be efficiently identified in documents and that this alone provides improved clustering. We next show the importance of the polysemous and synonymous nouns in clustering and develop a unique approach that allows us to measure the information gain in disambiguating these nouns in an unsupervised learning setting. In so doing, we can identify a core subset of semantic features that represent a text corpus. Empirical results show that by using core semantic features for clustering, one can reduce the number of features by 90% or more and still produce clusters that capture the main themes in a text corpus.
ISSN:0219-1377
0219-3116
DOI:10.1007/s10115-010-0370-4