Serum soluble MD-1 levels increase with disease progression in autoimmune prone MRL(lpr/lpr) mice
MD-1 is a secreted protein that forms a complex with radioprotective 105 (RP105) and this complex plays a crucial role in lipopolysaccharide (LPS) recognition by B cells. Disease progression is known to improve in RP105-deficient lupus-prone MRL(lpr/lpr) mice. Furthermore, a soluble form of the homo...
Gespeichert in:
Veröffentlicht in: | Molecular immunology 2012-01, Vol.49 (4), p.611-620 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | MD-1 is a secreted protein that forms a complex with radioprotective 105 (RP105) and this complex plays a crucial role in lipopolysaccharide (LPS) recognition by B cells. Disease progression is known to improve in RP105-deficient lupus-prone MRL(lpr/lpr) mice. Furthermore, a soluble form of the homologous MD-2 protein is present in the plasma of septic patients and can opsonize gram-negative bacteria in cooperation with Toll-like receptor (TLR) 4. We have now established a flow cytometry-based assay to detect the soluble form of murine MD-1 (sMD-1) and explored potential roles in autoimmunity. The assay was quantitative and validated with sera from MD-1-deficient mice. Interestingly, heat-inactivated murine serum diminished the ability of sMD-1 to bind RP105. The sMD-1 was secreted by bone marrow-derived macrophages from C57BL/6 mice. Autoimmune prone MRL(lpr/lpr) mice had higher levels of sMD-1 than control MRL(+/+) mice, and levels markedly increased with disease progression. Expression of MD-1 but not MD-2 mRNA increased with age in the liver and kidney of MRL(lpr/lpr) mice. Finally, immunohistochemical analyses revealed that MD-1 was present in infiltrated macrophages within perivascular lesions of the MRL(lpr/lpr) kidney. This correlation suggests that sMD-1 may contribute to pathogenesis in this autoimmune disease model. |
---|---|
ISSN: | 1872-9142 |
DOI: | 10.1016/j.molimm.2011.10.008 |