Determination of selected pesticides by GC with simultaneous detection by MS (NCI) and μ-ECD in fruit and vegetable matrices
A gas chromatography–mass spectrometry method in negative chemical ionization mode has been developed incorporating simultaneous detection using a micro-electron capture detector (μ-ECD) for the determination of pesticides in fruits and vegetables. This instrument configuration uses a three-way spli...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2012, Vol.402 (3), p.1365-1372 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A gas chromatography–mass spectrometry method in negative chemical ionization mode has been developed incorporating simultaneous detection using a micro-electron capture detector (μ-ECD) for the determination of pesticides in fruits and vegetables. This instrument configuration uses a three-way splitter device which divides the effluent from the analytical column between the two detectors with the split ratio 1:0.1 (MSD/μ-ECD) in each run. The μ-ECD was used for confirmation purposes. Validation of the method was performed on three matrices: tomato, apple, and orange. The ethyl acetate method was assayed; recovery studies were performed at 10 and 100 μg/kg. Recoveries between 70% and 120% were achieved and relative standard deviations lower than 20% (
n
= 5) were obtained for all pesticides and matrices studied. Limits of quantification lower than 10 μg/kg were obtained for 100% of pesticides in all of the matrices. Limits of quantification lower than 2.5 μg/kg were achieved for 77.8% of pesticides in the tomato and apple matrices, and for 72.2% of pesticides in the orange matrix. The method showed linear response in the concentration range tested (2.5–500 μg/kg) with correlation coefficients >0.99. Good repeatability and reproducibility results were obtained in all cases, with relative standard deviations lower than 16.7% and 20%, respectively. Finally, 20 incurred samples were analyzed using the proposed method. The simultaneous use of the two detectors was satisfactory for the analysis of these real samples. The total number of pesticides identified was 25. The number of samples which contained at least one pesticide was 15—this represented 75% of the total number of samples studied. |
---|---|
ISSN: | 1618-2642 1618-2650 |
DOI: | 10.1007/s00216-011-5552-8 |