Heat extraction methods from salinity-gradient solar ponds and introduction of a novel system of heat extraction for improved efficiency

Heat has generally been successfully extracted from the lower convective zone (LCZ) of solar ponds by two main methods. In the first, hot brine from the LCZ is circulated through an external heat exchanger, as tested and demonstrated in El Paso and elsewhere. In the second method, a heat transfer fl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2011-12, Vol.85 (12), p.3103-3142
Hauptverfasser: Leblanc, Jimmy, Akbarzadeh, Aliakbar, Andrews, John, Lu, Huanmin, Golding, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heat has generally been successfully extracted from the lower convective zone (LCZ) of solar ponds by two main methods. In the first, hot brine from the LCZ is circulated through an external heat exchanger, as tested and demonstrated in El Paso and elsewhere. In the second method, a heat transfer fluid circulates in a closed cycle through an in-pond heat exchanger, as used in the Pyramid Hill solar pond, in Victoria, Australia. Based on the experiences at the El Paso and Pyramid Hill solar ponds, the technical specifications, material selection, stability control, clarity maintenance, salt management and operating strategies are presented. A novel method of extracting heat from a solar pond is to draw the heat from the gradient layer. This method is analysed theoretically and results of an experimental investigation at Bundoora East, RMIT, are presented. An in-pond heat exchanger made of polyethylene pipe has been used to extract heat for over 2 months. Results indicate that heat extraction from the gradient layer increases the overall energy efficiency of the solar pond by up to 55%, compared with conventional method of heat extraction solely from the LCZ. The experimental results are compared with the theoretical analysis. A close agreement has been found. From this small-scale experimental study, convection currents were found to be localised only and the density profiles were unaffected. An experimental study using an external heat exchanger for brine extraction and re-injection at different levels within the gradient layer still needs to be conducted to determine the effect of the heat extraction from the non-convective zone (NCZ) on the stability of the salinity gradient (both vertically and horizontally) and an economic analysis needs to be conducted to determine the economic gains from increased thermal efficiency.
ISSN:0038-092X
1471-1257
DOI:10.1016/j.solener.2010.06.005