Inhibition of Mas G-protein signaling improves coronary blood flow, reduces myocardial infarct size, and provides long-term cardioprotection
The Mas receptor is a class I G-protein-coupled receptor that is expressed in brain, testis, heart, and kidney. The intracellular signaling pathways activated downstream of Mas are still largely unknown. In the present study, we examined the expression pattern and signaling of Mas in the heart and a...
Gespeichert in:
Veröffentlicht in: | American journal of physiology. Heart and circulatory physiology 2012-01, Vol.302 (1), p.H299-H311 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Mas receptor is a class I G-protein-coupled receptor that is expressed in brain, testis, heart, and kidney. The intracellular signaling pathways activated downstream of Mas are still largely unknown. In the present study, we examined the expression pattern and signaling of Mas in the heart and assessed the participation of Mas in cardiac ischemia-reperfusion injury. Mas mRNA and protein were present in all chambers of human hearts, with cardiomyocytes and coronary arteries being sites of enriched expression. Expression of Mas in either HEK293 cells or cardiac myocytes resulted in constitutive coupling to the G(q) protein, which in turn activated phospholipase C and caused inositol phosphate accumulation. To generate chemical tools for use in probing the function of Mas, we performed a library screen and chemistry optimization program to identify potent and selective nonpeptide agonists and inverse agonists. Mas agonists activated G(q) signaling in a dose-dependent manner and reduced coronary blood flow in isolated mouse and rat hearts. Conversely, treatment of isolated rat hearts with Mas inverse agonists improved coronary flow, reduced arrhythmias, and provided cardioprotection from ischemia-reperfusion injury, an effect that was due, at least in part, to decreased cardiomyocyte apoptosis. Participation of Mas in ischemia-reperfusion injury was confirmed in Mas knockout mice, which had reduced infarct size relative to mice with normal Mas expression. These results suggest that activation of Mas during myocardial infarction contributes to ischemia-reperfusion injury and further suggest that inhibition of Mas-G(q) signaling may provide a new therapeutic strategy directed at cardioprotection. |
---|---|
ISSN: | 0363-6135 1522-1539 |
DOI: | 10.1152/ajpheart.00723.2011 |