Rhcg1 and NHE3b are involved in ammonium-dependent sodium uptake by zebrafish larvae acclimated to low-sodium water

To investigate whether Na(+) uptake by zebrafish is dependent on NH4(+) excretion, a scanning ion-selective electrode technique was applied to measure Na(+) and NH4(+) gradients at the yolk-sac surface of zebrafish larvae. Low-Na(+) acclimation induced an inward Na(+) gradient (uptake), and a combin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2012-01, Vol.302 (1), p.R84-R93
Hauptverfasser: Shih, Tin-Han, Horng, Jiun-Lin, Liu, Sian-Tai, Hwang, Pung-Pung, Lin, Li-Yih
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate whether Na(+) uptake by zebrafish is dependent on NH4(+) excretion, a scanning ion-selective electrode technique was applied to measure Na(+) and NH4(+) gradients at the yolk-sac surface of zebrafish larvae. Low-Na(+) acclimation induced an inward Na(+) gradient (uptake), and a combination of low Na(+) and high NH4(+) induced a larger inward Na(+) gradient. When measuring the ionic gradients, raising the external NH4(+) level (5 mM) blocked NH4(+) excretion and Na(+) uptake; in contrast, raising the external Na(+) level (10 mM) simultaneously enhanced Na(+) uptake and NH4(+) excretion. The addition of MOPS buffer (5 mM), which is known to block NH4(+) excretion, also suppressed Na(+) uptake. These results showed that Na(+) uptake and NH4(+) excretion by larval skin are associated when ambient Na(+) level is low. Knockdown of Rhcg1 translation with morpholino-oligonucleotides decreased both NH4(+) excretion and Na(+) uptake by the skin and Na(+) content of whole larvae. Knockdown of nhe3b translation or inhibitor (5-ethylisopropyl amiloride) treatment also decreased both the NH4(+) excretion and Na(+) uptake. This study provides loss-of-function evidence for the involvement of Rhcg1 and NHE3b in the ammonium-dependent Na(+) uptake mechanism in zebrafish larvae subjected to low-Na(+) water.
ISSN:0363-6119
1522-1490
DOI:10.1152/ajpregu.00318.2011