Spatiotemporal Monitoring of High-Intensity Focused Ultrasound Therapy with Passive Acoustic Mapping

To demonstrate feasibility of monitoring high-intensity focused ultrasound (HIFU) treatment with passive acoustic mapping of broadband and harmonic emissions reconstructed from filtered-channel radiofrequency data in ex vivo bovine tissue. Both passive acoustic emissions and B-mode images were recor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiology 2012, Vol.262 (1), p.252-261
Hauptverfasser: JENSEN, Carl R, RITCHIE, Robert W, GYÖNGY, Miklós, COLLIN, James R. T, LESLIE, Tom, COUSSIOS, Constantin-C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To demonstrate feasibility of monitoring high-intensity focused ultrasound (HIFU) treatment with passive acoustic mapping of broadband and harmonic emissions reconstructed from filtered-channel radiofrequency data in ex vivo bovine tissue. Both passive acoustic emissions and B-mode images were recorded with a diagnostic ultrasound machine during 180 HIFU exposures of five freshly excised, degassed bovine livers. Tissue was exposed to peak rarefactional pressures between 3.6 and 8.0 MPa for 2, 5, or 10 seconds. The B-mode images were analyzed for hyperechoic activity, and threshold levels were determined for the harmonic (1.17 mJ) and broadband (0.0137 mJ) components of the passively reconstructed source energy to predict tissue ablation. Both imaging methods were compared with tissue lesions after exposure to determine their spatial accuracy and their capability to help predict presence of ablated tissue. Performance of both methods as detectors was compared (matched-pair test design). Passive mapping successfully aided prediction of the presence of tissue ablation more often than did conventional hyperechoic images (49 of 58 [84%] vs 31 of 58 [53%], P < .001). At 5.4-6.3-MPa exposures, sensitivity, specificity, negative predictive value, and positive predictive value of the two methods, respectively, were 15 of 20 versus five of 21 (P = .006), eight of nine versus eight of nine (P = .72), 15 of 16 versus five of six (P = .53), and eight of 13 versus eight of 24 (P = .011). Across HIFU exposure amplitude ranges, passive acoustic mapping also aided correct prediction of the visually detected location of ablation following tissue sectioning in 42 of 45 exposures for which the harmonic and broadband threshold levels for tissue ablation were exceeded. Early cavitation activity indicated the focal position within the tissue before irreversible tissue damage occurred. Passive acoustic mapping significantly outperformed the conventional hyperecho technique as an ultrasound-based HIFU monitoring method, as both a detector of lesion occurrence and a method of mapping the position of ablated tissue.
ISSN:0033-8419
1527-1315
DOI:10.1148/radiol.11110670