Nonpolymeric nanoassemblies for ocular administration of acyclovir: Pharmacokinetic evaluation in rabbits
Ocular bioavailability of acyclovir (ACV) was increased by chemically linking ACV to squalene, obtaining 4′- trisnorsqualenoylacyclovir (SQACV), which spontaneously forms nanoassemblies. The graph shows tear fluid concentration vs time profiles of ACV after the administration of SQACV and ACV formul...
Gespeichert in:
Veröffentlicht in: | European journal of pharmaceutics and biopharmaceutics 2012, Vol.80 (1), p.39-45 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ocular bioavailability of acyclovir (ACV) was increased by chemically linking ACV to squalene, obtaining 4′-
trisnorsqualenoylacyclovir (SQACV), which spontaneously forms nanoassemblies. The graph shows tear fluid concentration
vs time profiles of ACV after the administration of SQACV and ACV formulations.
The aim of this study was to increase bioavailability of the antiviral drug acyclovir (ACV) when administered by the ocular route. For this purpose, a new lipophilic derivative of acyclovir was synthesized, both possessing greater lipophilicity and providing the formation of a homogeneous water dispersion with higher amount of ACV than the aqueous solution of the parent drug. This was done by chemically linking acyclovir to the isoprenoid chain of squalene, obtaining 4′-
trisnorsqualenoylacyclovir (SQACV), in which squalene is covalently coupled to the 4′-hydroxy group of acyclovir. This new prodrug was then formulated as nonpolymeric nanoassemblies through nanoprecipitation; the resulting particles were characterized in terms of mean diameter, zeta potential, and stability. The pharmacokinetic profile of the prodrug in the tear fluid and in the aqueous humor of rabbits was evaluated and compared to that of the parent drug.
Data showed that SQACV nanoassemblies increased the amount of ACV in the aqueous humor of rabbits compared to free ACV solution. This new amphiphilic prodrug of acyclovir is a very promising tool to increase the ocular bioavailability of the parent drug. |
---|---|
ISSN: | 0939-6411 1873-3441 |
DOI: | 10.1016/j.ejpb.2011.10.001 |