Diversity enabling equilibration: disorder and the ground state in artificial spin ice

We report a novel approach to the question of whether and how the ground state can be achieved in square artificial spin ices where frustration is incomplete. We identify two sources of randomness that affect the approach to ground state: quenched disorder in the island response to fields and random...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2011-11, Vol.107 (21), p.217204-217204, Article 217204
Hauptverfasser: Budrikis, Zoe, Politi, Paolo, Stamps, R L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report a novel approach to the question of whether and how the ground state can be achieved in square artificial spin ices where frustration is incomplete. We identify two sources of randomness that affect the approach to ground state: quenched disorder in the island response to fields and randomness in the sequence of driving fields. Numerical simulations show that quenched disorder can lead to final states with lower energy, and randomness in the sequence of driving fields always lowers the final energy attained by the system. We use a network picture to understand these two effects: disorder in island responses creates new dynamical pathways, and a random sequence of driving fields allows more pathways to be followed.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.107.217204