New method for parameter estimation in probabilistic models: minimum probability flow

Fitting probabilistic models to data is often difficult, due to the general intractability of the partition function. We propose a new parameter fitting method, minimum probability flow (MPF), which is applicable to any parametric model. We demonstrate parameter estimation using MPF in two cases: a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2011-11, Vol.107 (22), p.220601-220601, Article 220601
Hauptverfasser: Sohl-Dickstein, Jascha, Battaglino, Peter B, DeWeese, Michael R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fitting probabilistic models to data is often difficult, due to the general intractability of the partition function. We propose a new parameter fitting method, minimum probability flow (MPF), which is applicable to any parametric model. We demonstrate parameter estimation using MPF in two cases: a continuous state space model, and an Ising spin glass. In the latter case, MPF outperforms current techniques by at least an order of magnitude in convergence time with lower error in the recovered coupling parameters.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.107.220601