Interface Engineering by Piezoelectric Potential in ZnO-Based Photoelectrochemical Anode

Through a process of photoelectrochemical (PEC) water splitting, we demonstrated an effective strategy for engineering the barrier height of a heterogeneous semiconductor interface by piezoelectric polarization, known as the piezotronic effect. A consistent enhancement or reduction of photocurrent w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2011-12, Vol.11 (12), p.5587-5593
Hauptverfasser: Shi, Jian, Starr, Matthew B, Xiang, Hua, Hara, Yukihiro, Anderson, Marc A, Seo, Jung-Hun, Ma, Zhenqiang, Wang, Xudong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Through a process of photoelectrochemical (PEC) water splitting, we demonstrated an effective strategy for engineering the barrier height of a heterogeneous semiconductor interface by piezoelectric polarization, known as the piezotronic effect. A consistent enhancement or reduction of photocurrent was observed when tensile or compressive strains were applied to the ZnO anode, respectively. The photocurrent variation is attributed to a changed barrier height at the ZnO/ITO interface, which is a result of the remnant piezoelectric potential across the interface due to a nonideal free charge distribution in the ITO electrode. In our system, ∼1.5 mV barrier height change per 0.1% applied strain was identified, and 0.21% tensile strain yielded a ∼10% improvement of the maximum PEC efficiency. The remnant piezopotential is dictated by the screening length of the materials in contact with piezoelectric component. The difference between this time-independent remnant piezopotential effect and time-dependent piezoelectric effect is also studied in details.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl203729j