ICAM-1 and AMPK regulate cell detachment and apoptosis by N-methyl-N′-nitro-N-nitrosoguanidine, a widely spread environmental chemical, in human hormone-refractory prostate cancers

Poly(ADP-ribose) polymerase-1 (PARP-1), a sensor of DNA damage, plays a crucial role in the regulation of DNA repair. PARP-1 hyperactivation causes DNA damage and cell death. The underlying mechanism is complicated and is through diverse pathways. The understanding of responsible signaling pathways...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicology and applied pharmacology 2011-12, Vol.257 (3), p.412-419
Hauptverfasser: Chen, Yi-Cheng, Lu, Pin-Hsuan, Hsu, Jui-Ling, Yu, Chia-Chun, Guh, Jih-Hwa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poly(ADP-ribose) polymerase-1 (PARP-1), a sensor of DNA damage, plays a crucial role in the regulation of DNA repair. PARP-1 hyperactivation causes DNA damage and cell death. The underlying mechanism is complicated and is through diverse pathways. The understanding of responsible signaling pathways may offer implications for effective therapies. After concentration-response determination of N-Methyl-N′-Nitro-N-Nitrosoguanidine (MNNG, a PARP-1 activating agent and an environmental mutagen) in human hormone-refractory prostate cancers, the data showed that concentrations below 5μM did not change cell survival but cause a time-dependent up-regulation of intracellular adhesion molecule-1 (ICAM-1) in mRNA, total protein and cell surface levels. Detection of phosphorylation and degradation of IκB-α and nuclear translocation of NF-κB showed that MNNG induced the activation of NF-κB that was responsible for the ICAM-1 up-regulation since PDTC (a NF-κB inhibitor) significantly abolished this effect. However, higher concentrations (e.g., 10μM) of MNNG induced a 61% detachment of the cells which were apoptosis associated with the activation of AMP-activated protein kinase (AMPK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Further identification showed that both AMPK and JNK other than p38 MAPK functionally contributed to cell death. The remaining 39% attached cells were survival associated with high ICAM-1 expression. In conclusion, the data suggest that NF-κB-dependent up-regulation of ICAM-1 plays a key role on cell attachment and survival; whereas, activation of AMPK and JNK participates in cytotoxic signaling pathways in detached cells caused by PARP-1 activation. [Display omitted] ► Low level of DNA damage helps cell attachment and survival via ICAM-1 upregulation. ► High level of DNA damage causes AMPK- and JNK-involved cell detachment and death. ► The study provides an anticancer approach targeting PARP-1 and DNA damage response.
ISSN:0041-008X
1096-0333
DOI:10.1016/j.taap.2011.09.025