The effect of zoledronate-hydroxyapatite nanocomposites on osteoclasts and osteoblast-like cells in vitro
Abstract This study demonstrates that zoledronate containing hydroxyapatite nanocrystals (HA-ZOL) can be synthesized as a single crystalline phase up to a zoledronate content of about 7 wt% by direct synthesis in aqueous solution, at variance with what previously found for alendronate-hydroxyapatite...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2012-01, Vol.33 (2), p.722-730 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract This study demonstrates that zoledronate containing hydroxyapatite nanocrystals (HA-ZOL) can be synthesized as a single crystalline phase up to a zoledronate content of about 7 wt% by direct synthesis in aqueous solution, at variance with what previously found for alendronate-hydroxyapatite nanocrystals (HA-AL). On increasing zoledronate incorporation, the length of the coherent crystalline domains and the crystal dimensions of hydroxyapatite decrease, whereas the specific surface area increases. Full profile fitting of the powder X-ray diffraction patterns does not indicate major structural modifications, but an increase of the hydroxyapatite unit cell, on increasing zoledronate content. These data, together with a structural similarity between hydroxyapatite and calcium zoledronate, suggest a preferential interaction between zoledronate and the hydroxyapatite faces parallel to the c -axis direction. Osteoblast-like MG-63 cells and human osteoclasts were cultured on HA-ZOL nanocrystals and as a comparison on HA-AL nanocrystals containing almost the same (about 7 wt%) bisphosphonate amount. The beneficial influence of bisphosphonates on osteoblast proliferation and differentiation is enhanced when the tests are performed in co-cultures. Similarly, the reduction of osteoclast proliferation and the increase of Caspase 3 production are dramatically enhanced in co-cultures, which highlight an even greater influence of HA-ZOL than HA-AL on osteoclast apoptosis. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2011.09.092 |