Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing

Abstract In this work, electrochemiluminescence (ECL) immunoassay was introduced into the recently proposed microfluidic paper-based analytical device (μPADs) based on directly screen-printed electrodes on paper for the very first time. The screen-printed paper-electrodes will be more important for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2012-02, Vol.33 (4), p.1024-1031
Hauptverfasser: Ge, Lei, Yan, Jixian, Song, Xianrang, Yan, Mei, Ge, Shenguang, Yu, Jinghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract In this work, electrochemiluminescence (ECL) immunoassay was introduced into the recently proposed microfluidic paper-based analytical device (μPADs) based on directly screen-printed electrodes on paper for the very first time. The screen-printed paper-electrodes will be more important for further development of this paper-based ECL device in simple, low-cost and disposable application than commercialized ones. To further perform high-performance, high-throughput, simple and inexpensive ECL immunoassay on μPAD for point-of-care testing, a wax-patterned three-dimensional (3D) paper-based ECL device was demonstrated for the very first time. In this 3D paper-based ECL device, eight carbon working electrodes including their conductive pads were screen-printed on a piece of square paper and shared the same Ag/AgCl reference and carbon counter electrodes on another piece of square paper after stacking. Using typical tris-(bipyridine)-ruthenium (Ⅱ) - tri- n -propylamine ECL system, the application test of this 3D paper-based ECL device was performed through the diagnosis of four tumor markers in real clinical serum samples. With the aid of a facile device-holder and a section-switch assembled on the analyzer, eight working electrodes were sequentially placed into the circuit to trigger the ECL reaction in the sweeping range from 0.5 to 1.1 V at room temperature. In addition, this 3D paper-based ECL device can be easily integrated and combined with the recently emerging paper electronics to further develop simple, sensitive, low-cost, disposable and portable μPAD for point-of-care testing, public health and environmental monitoring in remote regions, developing or developed countries.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2011.10.065