Microbial contamination of fuel ethanol fermentations

Microbial contamination is a pervasive problem in any ethanol fermentation system. These infections can at minimum affect the efficiency of the fermentation and at their worse lead to stuck fermentations causing plants to shut down for cleaning before beginning anew. These delays can result in costl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Letters in applied microbiology 2011-10, Vol.53 (4), p.387-394
Hauptverfasser: Beckner, M, Ivey, M.L, Phister, T.G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microbial contamination is a pervasive problem in any ethanol fermentation system. These infections can at minimum affect the efficiency of the fermentation and at their worse lead to stuck fermentations causing plants to shut down for cleaning before beginning anew. These delays can result in costly loss of time as well as lead to an increased cost of the final product. Lactic acid bacteria (LAB) are the most common bacterial contaminants found in ethanol production facilities and have been linked to decreased ethanol production during fermentation. Lactobacillus sp. generally predominant as these bacteria are well adapted for survival under high ethanol, low pH and low oxygen conditions found during fermentation. It has been generally accepted that lactobacilli cause inhibition of Saccharomyces sp. and limit ethanol production through two basic methods; either production of lactic and acetic acids or through competition for nutrients. However, a number of researchers have demonstrated that these mechanisms may not completely account for the amount of loss observed and have suggested other means by which bacteria can inhibit yeast growth and ethanol production. While LAB are the primary contaminates of concern in industrial ethanol fermentations, wild yeast may also affect the productivity of these fermentations. Though many yeast species have the ability to thrive in a fermentation environment, Dekkera bruxellensis has been repeatedly targeted and cited as one of the main contaminant yeasts in ethanol production. Though widely studied for its detrimental effects on wine, the specific species–species interactions between D. bruxellensis and S. cerevisiae are still poorly understood.
ISSN:0266-8254
1472-765X
DOI:10.1111/j.1472-765X.2011.03124.x