Growth, feed utilization and body composition of Asian catfish (Pangasius hypophthalmus) fed at different dietary protein and lipid levels

This study examined the effect of dietary protein and lipid levels on growth, feed utilization and body composition of Asian catfish Pangasius hypophthalmus reared in cages. Eight test diets were formulated at four protein (340, 380, 420 and 460 g kg−1 crude protein) and two lipid (50 and 90 g kg−1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aquaculture nutrition 2011-10, Vol.17 (5), p.578-584
Hauptverfasser: LIU, X.Y., WANG, Y., JI, W.X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study examined the effect of dietary protein and lipid levels on growth, feed utilization and body composition of Asian catfish Pangasius hypophthalmus reared in cages. Eight test diets were formulated at four protein (340, 380, 420 and 460 g kg−1 crude protein) and two lipid (50 and 90 g kg−1 crude lipid) levels. Fish (initial weight 4.7 g fish−1) were fed the test diets for 8 weeks. Final body weight, weight gain (WG), feed intake (FI), feed conversion ratio (FCR), contents of crude protein, lipid and energy in whole body were dependent on both dietary protein and lipid levels, while specific growth rate (SGR), hepatosomatic index and body moisture content were dependent on dietary lipid level. The WG and SGR increased with the increase in either dietary protein level (at the same lipid level) or lipid level (at the same protein level). The FI and FCR decreased with the increase in dietary protein level (at the same lipid level) or lipid level (at the same protein level). Protein sparing action occurred in case dietary lipid level increased. Fish fed the diet containing 453 g kg−1 crude protein and 86 g kg−1 lipid had the highest WG and SGR, but the lowest FI and FCR, among the diet treatments. There were no significant differences in the protein retention efficiency (PRE) and energy retention efficiency (ERE) among the diet treatments, although PRE and ERE were relatively high in fish fed the diet containing 453 g kg−1 crude protein and 86 g kg−1 lipid. At the end of the feeding trial, body protein content increased, while body lipid content decreased, with the increase in dietary protein content at the same lipid level. Our results suggest that dietary levels of 450 g kg−1 crude protein and 90 g kg−1 lipid are adequate to support fast growth of P. hypophthalmus reared in cages.
ISSN:1353-5773
1365-2095
DOI:10.1111/j.1365-2095.2011.00859.x